
The backend
Saving and retrieving data in an app

for UNC COMP 523: Software Engineering Laboratory
on Monday, September 23rd, 2019

by Jeff Terrell



The problem

• All apps need data
• Where does the data live?
• On-device
• In a centralized location (e.g. “in the cloud”)

• The centralized location is the authoritative “source of truth”
• This is called “the backend” or “server”
• (”The frontend” or “client” is the app code running on the user’s 

device)



Backend components

• The database stores the data durably
• “Durably” means “surviving a reboot”, i.e. using disks

• The “API server” interfaces between clients and the database
• Why? Separation of concerns.
• Handling HTTP requests
• Doing authentication and authorization checks
• Limit the types of interactions (untrusted) clients can have with data
• Easier to develop as a separate program than as part of database

• Backend programmers use a database but create an API server



The API: application programming interface

• Like a “user interface” (the screens that users interact with), but for 
programs
• The frontend is a program that uses the API
• The API defines ways that the frontend code can save and retrieve 

data
• These ways are called “endpoints”; an API is a set of endpoints
• You must define an API for your app and your data
• Modern APIs usually use HTTP



HTTP: the hypertext transfer protocol

• Browsers use HTTP almost exclusively
• Two types of HTTP messages: requests and responses
• Requests have a method, a URL, and maybe parameters or a body
• Responses have a status code (success? error?) and usually a body
• All messages have headers with extra information, e.g. cookies and 

content types
• Request methods might be GET, POST, PUT, DELETE, etc.
• You can inspect HTTP messages in your browser



App development process

• Design screens that users will see
• Define an API
• In parallel:
• Develop the backend
• Develop the frontend

• Deploy
• Profit



Outline

1. Introduce backend concepts
2. Decide what to build
3. Define an API
4. Write backend code
5. Write frontend code



What we’ll build

• A rudimentary shared-canvas drawing app
• Supported actions:
• Get the current canvas
• Create a rectangle



Outline

1. Introduce backend concepts
2. Decide what to build
3. Define an API
4. Write backend code
5. Write frontend code



Defining an API

• Our job: define expectations for HTTP requests and HTTP responses, 
including:
• request method
• request path
• request body, if any, including content type and specific requirements
• response status code(s)
• response body, including content type and specific shape

• Remember to consider the frontend's perspective



Defining an API • get the current canvas

• The request:
• should have a method of GET
• should have a URL path of /
• should not have a body

• The response:
• should have a code of 200 (“OK”) with a body whose content type is 
image/png containing the canvas as a PNG image



Defining an API • create a rectangle

• The request:
• should have a method of POST
• should have a URL path of /rect
• should have a content type of EDN (extensible data notation)
• should have a body like this:

• [50 100 10 30 [0.95 0.5 0.1]]
• (i.e. x, y, width, height, and RGB color values 0 <= x <= 1)

• The response:
• If the expectations aren’t met:

• should have a code of 400 (“bad request”) and a body that explains why
• If the expectations are met:

• should have a code of 204 (“no content”) with an empty body

https://github.com/edn-format/edn


API Summary

Method Path Params Status code(s)
GET / - 200 (“OK”)

POST /rect • x
• y
• width
• height
• RGB color values

400 (“bad request”)
204 (“no content”)



Outline

1. Introduce backend concepts
2. Decide what to build
3. Define an API
4. Write backend code
5. Write frontend code

Find the code here:
https://github.com/kyptin/shared-canvas-backend

https://github.com/kyptin/shared-canvas-backend

