1. Automated testing

What and why

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 1/15



What is automated testing?

e Testing a program with a program
e Many approaches, as we'll see

e Usually involves more code, written in parallel to actual
application code

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 2 /15



Why test? (1)

You get the perspective of the caller

e tests of a module will (typically) use the same interface
that callers do

o helps keep things taut and minimal; reduces incidental
complexity

o i.e. keep things simple

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 3/15



Why test? (2)

Continuous Deployment

e provides a safety net that you're not deploying a bug

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 4 /15



Why test? (3)

tests are developer-oriented documentation

@ reveals intentions of the code

e example

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 5/ 15



Why test? (4)

it helps future devs know whether they break something

e This enables agility

o What do we do when we don't feel confident that we
understand? We become hesitant and slow.

e Remember that courage is a core value of Extreme
Programming

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 6 /15



Why test? (5)

it enables refactoring

e another source of hesitation: striving for excellence in code

e refactoring essentially means to improve the clarity of code

e key insight: decouple getting it working from getting it
simple

e write tests, get it working, then refactor with courage

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09

7/ 15



Why test? (6)

it enables tight feedback loops

@ minimize the time gap

e if there's a bug, it's likely to be in what you just wrote, so
no context switching needed for debugging

e improved "time locality"
o we'll see this in action later

e goal: traction and steady progress on your code

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 8 /15



Why not test?

e It doesn't catch everything
o But still catches many things

o It takes longer; you must write "extra" code
e True, but often worth it, in my estimation

e It adds inertia to the interface
o Interface changes are less agile

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 9 /15



So when should | test?

e Main factor: what's the likely longevity of the project?

o Quick spike? Don't test.
o Longer project? Higher likelihood of things changing with a
long time gap. Test.

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 10 / 15



2. Testing basics

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 11 / 15



What to test

e Test the code of your project
e Don't test functionality of dependencies

e Typical setup: one test "suite" per code
module/class/namespace

e And 1 test block (a "describe" block) per
function/method

e And >=1 test case per "behavior"

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 12 / 15



Test isolation spectrum

o "end-to-end" or "system" tests test everything working
together

e for example, there are ways to remote control a browser
to put a web app through its paces

e "unit" tests only test one unit in isolation, e.g. a
particular function or method

e "integration" tests combine at least two units, testing
units as well as interfaces between units

o fuzzy term; some say "integration test" and imply some
amount of integration with a system, especially a database

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 13 /15



Testing tutorial

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 14 / 15



Testing exercise

git clone https:
//gitlab.com/jeff.terrell/testing-tutorial.git

cd testing-tutorial

npm install

npm test

edit src/sum.test.js and implement the first test
get to green: fix bug in src/sum.js

©0 0000

optionally, implement other two tests

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 15 / 15


https://gitlab.com/jeff.terrell/testing-tutorial.git
https://gitlab.com/jeff.terrell/testing-tutorial.git

	Latex Prelude
	1. Automated testing
	What and why

	2. Testing basics

