
1. Automated testing

What and why

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 1 / 15



What is automated testing?

Testing a program with a program
Many approaches, as we’ll see
Usually involves more code, written in parallel to actual
application code

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 2 / 15



Why test? (1)

You get the perspective of the caller

tests of a module will (typically) use the same interface
that callers do
helps keep things taut and minimal; reduces incidental
complexity
i.e. keep things simple

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 3 / 15



Why test? (2)

Continuous Deployment

provides a safety net that you’re not deploying a bug

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 4 / 15



Why test? (3)

tests are developer-oriented documentation

reveals intentions of the code
example

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 5 / 15



Why test? (4)

it helps future devs know whether they break something

This enables agility
What do we do when we don’t feel confident that we
understand? We become hesitant and slow.
Remember that courage is a core value of Extreme
Programming

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 6 / 15



Why test? (5)

it enables refactoring

another source of hesitation: striving for excellence in code
refactoring essentially means to improve the clarity of code
key insight: decouple getting it working from getting it
simple
write tests, get it working, then refactor with courage

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 7 / 15



Why test? (6)

it enables tight feedback loops

minimize the time gap
if there’s a bug, it’s likely to be in what you just wrote, so
no context switching needed for debugging
improved "time locality"
we’ll see this in action later
goal: traction and steady progress on your code

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 8 / 15



Why not test?

It doesn’t catch everything
But still catches many things

It takes longer; you must write "extra" code
True, but often worth it, in my estimation

It adds inertia to the interface
Interface changes are less agile

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 9 / 15



Analysis

So when should I test?
Main factor: what’s the likely longevity of the project?

Quick spike? Don’t test.
Longer project? Higher likelihood of things changing with a
long time gap. Test.

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 10 / 15



2. Testing basics

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 11 / 15



What to test

Test the code of your project
Don’t test functionality of dependencies
Typical setup: one test "suite" per code
module/class/namespace
And 1 test block (a "describe" block) per
function/method
And >= 1 test case per "behavior"

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 12 / 15



Test isolation spectrum

"end-to-end" or "system" tests test everything working
together
for example, there are ways to remote control a browser
to put a web app through its paces
"unit" tests only test one unit in isolation, e.g. a
particular function or method
"integration" tests combine at least two units, testing
units as well as interfaces between units

fuzzy term; some say "integration test" and imply some
amount of integration with a system, especially a database

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 13 / 15



Testing tutorial

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 14 / 15



Testing exercise

1 git clone https:
//gitlab.com/jeff.terrell/testing-tutorial.git

2 cd testing-tutorial
3 npm install
4 npm test
5 edit src/sum.test.js and implement the first test
6 get to green: fix bug in src/sum.js
7 optionally, implement other two tests

Jeff Terrell Testing, Part 1 (UNC COMP 523) 2019-10-09 15 / 15

https://gitlab.com/jeff.terrell/testing-tutorial.git
https://gitlab.com/jeff.terrell/testing-tutorial.git

	Latex Prelude
	1. Automated testing
	What and why

	2. Testing basics

